

(54) Title of the invention : Novel Interconnect Design for Reducing Signal Crosstalk in VLSI Circuits

		(71) Name of Applicant : 1)Dr Vikas Maheshwari Address of Applicant :Asst Dean-R&D and Professor, Department of Electronics & Communication Engineering, Guru Nanak Institutions Technical Campus Hyderabad, Telangana, 501506, India ----- 2)Santosh Kumar Dwivedi 3)Sumita Gupta 4)Dr. Sangeeta Jana Mukhopadhyay 5)Krishn Kumar 6)Dr Neha Gupta 7)Prof. R. S. Salaria 8)Dr. Chandragupta Mauryan. K. S Name of Applicant : NA Address of Applicant : NA (72) Name of Inventor : 1)Dr Vikas Maheshwari Address of Applicant :Asst Dean-R&D and Professor, Department of Electronics & Communication Engineering, Guru Nanak Institutions Technical Campus Hyderabad, Telangana, 501506, India ----- 2)Santosh Kumar Dwivedi Address of Applicant :Professor, Department of Electronics & Communication Engineering, Guru Nanak Institutions Technical Campus Hyderabad, Telangana, 501506, India ----- 3)Sumita Gupta Address of Applicant :Asst Professor, Department of Electronics & Telecommunication, K. C. College of Engineering & Management Studies and Research Thane, Maharashtra, 400603, India ----- 4)Dr. Sangeeta Jana Mukhopadhyay Address of Applicant :Asst Professor, Brainware University, 398, Ramkrishnapur Road, Barasat, Near Jagadighata Market, Kolkata, West Bengal, 700125, India ----- 5)Krishn Kumar Address of Applicant :Student, Department of Electronics & Communication Engineering, Guru Nanak Institutions Technical Campus Hyderabad, Telangana, 501506, India ----- 6)Dr Neha Gupta Address of Applicant :Asst Professor, Depart of Physics, Guru Nanak Institutions Technical Campus, Hyderabad, Telangana, 501506, India ----- 7)Prof. R. S. Salaria Address of Applicant :Prof.R. S. Salaria, Professor, Department of Computer Science & Engineering, Guru Nanak Institutions Technical Campus, Hyderabad, Telangana, 501506, India ----- 8)Dr. Chandragupta Mauryan. K. S Address of Applicant :Professor, Department of Electrical & Electronics Engineering, Guru Nanak Institutions Technical Campus, Hyderabad, Telangana, 501506, India -----	
		(57) Abstract : ABSTRACT Novel Interconnect Design for Reducing Signal Crosstalk in VLSI Circuits The invention provides a novel interconnect design for reducing signal crosstalk in Very Large Scale Integration (VLSI) circuits. As transistor densities increase in modern semiconductor technologies, the proximity of adjacent signal lines leads to increased electromagnetic interference, which causes crosstalk. This crosstalk results in signal degradation, noise, and timing errors, adversely affecting the performance and reliability of high-speed circuits. The present design incorporates advanced strategies such as staggered signal line arrangements, strategically placed grounding shields, and the use of low-k dielectric materials to effectively mitigate crosstalk, ensuring improved signal integrity. The interconnect design enhances the overall performance of VLSI circuits by addressing the critical issue of signal interference without requiring excessive chip area. By optimizing the spacing between signal lines based on their importance and strategically integrating shielding, the invention reduces unwanted signal coupling while maintaining efficient use of the available chip space. The incorporation of low-k dielectric materials lowers capacitance between adjacent signal lines, further reducing the potential for crosstalk and improving the power efficiency of the circuit. This invention is particularly relevant for future generations of VLSI technologies, where process nodes are expected to shrink even further, making crosstalk a more significant challenge. The proposed interconnect design is scalable and adaptable to smaller nodes such as 5 nm and beyond, ensuring that it remains effective as technology evolves. Additionally, the design improves manufacturing efficiency by minimizing the need for complex fabrication processes, reduces power consumption, and optimizes circuit performance, making it an ideal solution for next-generation semiconductor devices.	

No. of Pages : 16 No. of Claims : 5