

(12) PATENT APPLICATION PUBLICATION

(19) INDIA

(22) Date of filing of Application :15/05/2025

(21) Application No.202541046891 A

(43) Publication Date : 30/05/2025

(54) Title of the invention : Fake Profile Identification on Social Media Using Machine Learning Algorithms

(51) International classification	:G06Q50/00, G06N20/00, G06F21/31	(71)Name of Applicant : 1)MR. JOYDEEP KUNDU Assistant Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----
(86) International Application No	:NA	2)DR. SANJAY KUMAR SEN Associate Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----
Filing Date	:NA	3)MR. SUMIT ROY Assistant Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----
(87) International Publication No	: NA	4)DR. PAYEL SENGUPTA Assistant Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----
(61) Patent of Addition to Application Number	:NA	5)DR. DAIZY DEB Associate Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----
Filing Date	:NA	6)DR. KASHI NATH DATTA Assistant Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----
(62) Divisional to Application Number	:NA	7)MR. NILOY BISWAS Assistant Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----
Filing Date	:NA	8)MR. NITYANANDO MAHATO Assistant Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----
		9)MR. SAYON DEY Assistant Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----
		10)MR. SHOUVIK DEBNATH Assistant Professor Address of Applicant :BRAINWARE UNIVERSITY, WEST BENGAL ----- -----

(57) Abstract :

The rapid growth of social media platforms has led to an increase in the number of fake profiles—accounts created with deceptive intent to spread misinformation, conduct scams, impersonate users, or manipulate public opinion. These profiles pose significant security, privacy, and trust challenges for both users and platform providers. Traditional detection methods, such as manual moderation or rule-based filters, are insufficient due to the scale and sophistication of modern fake accounts. This study presents a machine learning-based approach for identifying fake profiles by analyzing a combination of profile attributes, user behavior, content patterns, and social network interactions. Various classification algorithms, including Random Forest, Support Vector Machines (SVM), and Logistic Regression, are evaluated using a labeled dataset. Feature engineering techniques are employed to extract meaningful indicators that distinguish real from fake accounts. The proposed system is designed to be scalable, adaptable, and capable of real-time detection. The results demonstrate high accuracy and robustness, with the ability to generalize across different social media platforms. The inclusion of explainable AI techniques ensures transparency in decision-making, making the system suitable for practical deployment. This research contributes to enhancing online safety, reducing the impact of digital deception, and supporting the development of trustworthy social media environments.

No. of Pages : 10 No. of Claims : 5