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Abstract  

Big data technologies have been employed in a variety of fields since their inception, with their use within 

biomedical and health-care informatics research enhancing at an astonishing speed. At an extraordinary speed 

and scale, massive amounts of biological and clinical data have indeed been produced and gathered. Big data 

applications open up new avenues for discovering new knowledge and developing innovative techniques for 

enhancing health-care quality. The use of big data in health care is a rapidly expanding field, with numerous 

recent findings and techniques emerging in recent years. The authors will examine and address big data 

applications in four major biomedical subfields in this paper: (1) bioinformatics, (2) clinical informatics, and 

(3) imaging informatics, and (4) public health informatics. 
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1. Introduction 

 

Biologists are now part of the big-data club. As 

an outcome of the development of high-

throughput genomic information, life researchers 

have started to deal with enormous amounts of 

data, experiencing obstacles with managing, 

handling, and moving information that have been 

earlier the area of astronomers and high-energy 

physicists. Big data refers to large or complicated 

data sets that conventional information 

processing applications cannot handle. Analysis, 

capture, data collection, search, communicating, 

storage, exchange, visualisation, query 

processing, upgrading, and information privacy 

are all obstacles that such data sets face. The term 

commonly applies to the application of predictive 

analytics or other sophisticated analytics 

methodologies that retrieve value from 

information, rather than a specific dimensions of 

data set [1]. Accuracy in big data may lead to 

more confident decision making, and better 

decisions can result in greater operational 

efficiency, cost reduction and reduced risk. From 

just a scientific point of view, big data is 

characterized by the gathering, collection, and 

evaluation of information sets with an elevated 

degree of complexity or dimensions. In alongside 

data volume, the definition of big data includes 

data variety, velocity, and value. As a result, data 

handling and evaluation employing conventional 

methods and instruments is becoming 

challenging. Access to data and assessment are 

influenced by information systems (IT). 

Information is deemed large when its reusability 

adds to the creation of new insights. Given this, 

IT has been going to support new scientific 

models and recently founded interdisciplinary 

research areas. 

Data sets are rising exponentially in component 

since they are progressively assembled by cheap 

and innumerable information-sensing mobile 
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devices, aerial (remote sensing), software logs, 

cams, microphones, radio-frequency 

identification (RFID) audience, and wireless 

sensor networks [2] and [3]. Big data typically 

describes information sets that are larger than the 

capacity of popular computer tools to grasp, 

collate, handle, and analyse information in a 

reasonable amount of time [4]. Big data has 

increased the demand of information 

management specialists in that Software AG, 

Oracle Corporation, IBM, Microsoft, SAP, EMC, 

HP and Dell have spent more than $15 billion on 

software firms specializing in data management 

and analytics. Even the usage of big data has 

been found its extensive use in various biological 

aspects which we shall be discussing throughout 

this paper. 

Although the algorithms and modelling 

techniques are comparable, the user interfaces of 

conventional analytics techniques as well as those 

in use for big data are significantly different; 

conventional medical analytics tools have grown 

to be extremely user-friendly and straightforward. 

Big data analytics tools, on the contrary hand, are 

incredibly complicated, necessitating 

comprehensive programming and the 

implementation of a diverse set of skills. They 

surfaced haphazardly, as mostly opensource 

development platforms and tools, and thus lack 

the assistance and user-friendliness of vendor-

driven patented technology tools. As Figure 1 

indicates, the complexity begins with the data 

itself. 

 

Figure 1 Complexity with the big data 
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1.1 Challenges in Big Data 

This is the point where big data can change the 

way life sciences research is conducted. In this 

case, big data can integrate gene sequencing data 

with relevant proteomic and metabolomic 

information on one platform. This might appear 

to be a simple solution to the problem, it is 

essential to keep in mind that it would necessitate 

the integration of data from many different 

sources in such a manner that scientists can 

effectively analyse and interpret it. Regretfully, 

there has been an increasing scarcity of 

technology innovations capable of dealing with 

the enormous scale and variety of information. 

Moreover, the big data solution demanded by the 

biosciences industry must additionally be 

competent not just of managing the enormous 

quantity of information currently accessible, 

additionally maintaining up with the increasing 

amount of information that would be published 

each and every day. 

Over 200,000 clinical studies are actually 

ongoing, including 21,000 drug elements, 1,357 

unique drugs, 22,000 genes, and hundreds of 

millions of proteins. There are different types and 

levels and experimentations inside every one of 

these research fields that generate a variety of 

information. Furthermore, over 24 million 

medical and scientific articles have been 

published to date, with an approximated 1.8 

million fresh publications becoming reported 

every year. 

Chosen to take as a whole, any solitary researcher 

would struggle to extract all of this information. 

Researchers are lacking numerous chances to get 

their hands-on knowledge that might contribute 

to their individual research endeavours because 

the average research scientist interprets 

somewhere around 250 and 300 articles per year. 

 

2. Big data features:  

We've all learned of the "three Vs" of big data: 

volume, variety, and velocity. However, Inderpal 

Bhandar, Chief Data Officer at Express Scripts, 

stated during his demonstration at the Big Data 

Innovation Summit in Boston that there is a few 

supplementary "Vs" that IT, business, and data 

scientists must be worried about, most important 

of which is big data veracity. Validity and 

volatility are two other big data "Vs" getting 

praise at the summit. The 6Vs of big data are 

summarised below. 

a. Volume: The term "big data" implies 

massive amounts of data. Employees were 

previously responsible for data generation. Now 

since information is produced by equipment, 

networks, and human interaction on frameworks 

including social media, the quantity of data that 

can be analyzed is enormous. However, Inderpal 

claims that the amount of information is not as 

problematic as other Vs, such as veracity. 

 

b. Variety refers to the numerous data types 

and sources that exist, both unstructured and 

structured. Designers used to save information 

from databases and excel sheets. Data now 

consists of emails, photos, videos, monitoring 

equipment, PDFs, audio, and so on. This wide 

range of unstructured information creates 

difficulties for information storage, quarrying, 

and assessment. Jeff Veis, VP Solutions at HP 

Autonomy presented how HP is helping 

organizations deal with big challenges including 

data variety. 

 

c. Velocity: The rate upon which data flows 

in through sources such as business operations, 

machineries, connections, and social interaction 

with things such as social media websites, 

portable devices, etc. is referred to as velocity. 

The information flow is enormous and constant. 
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If investigators and business owners can manage 

the speed, real-time data could indeed assist them 

in making precious judgements that would 

provide competitive advantages and return on 

investment. Inderpal believes that sample 

selection information may assist with problems 

such as volume and velocity. 

 

d. Veracity: Big Data Veracity refers to a 

prejudices, loudness, and irregularities in 

information. Is the information being storable and 

extracted relevant to the issue under 

investigation? Once especially in comparison to 

items like volume and velocity, Inderpal believes 

that the most challenging thing throughout data 

analysis is veracity. When planning one’s big 

data strategy, make certain that your employees 

and associates are working together to maintain 

your information clean and your procedures are 

in place to avoid "dirty data" from accruing in 

your systems. 

e. Validity: The question of validity, such 

as the question of the veracity of big data, 

depends on whether the information is reliable 

and precise for such intentional usages. Trying to 

make rational decisions necessitates the use of 

obviously real information. Phil Francisco, VP of 

Product Management at IBM, has spoken about 

IBM's big data strategy as well as the techniques 

they provide for assisting with data veracity and 

validity. 

 

f. Volatility: The term "big data volatility" 

relates as far as how lengthy data is legitimate 

and ought to be stored. In this world of 

instantaneous data, users need to ascertain as to 

what point the information ceases to be important 

for the present analysis. 

Big data clearly deals with issues beyond 

volume, variety and velocity to other concerns 

like veracity, validity and volatility which is 

clearly depicted in details in Figure 2[5]. The 

figure also shows the levels and volume of data 

as distributed in the three different features.

 

 

Figure 2 A brief overview on big-data features. 
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3. Features of Big Data and sparsest solution 

in high confidence set 

 

3.1 Heterogeneity 

 

Even though individual characteristics are large, 

Big Data enhances our capacity for identifying 

similarities in an inhabitant. One instance is 

whether drinking a glass of wine lessens the 

likelihood of contracting particular illnesses. 

When there is a lot of numerical data noise, the 

population constructions can get entombed. 

Despite this, big sample sizes allow statistical 

methods to uncover such hidden patterns. [6]. 

 

3.2 Computation 

 

Large-scale estimation is critical in big data 

analysis. High-dimensional enhancement isn't 

only costly, but also instability in data 

processing, with slow convergence. Because of 

instability and computation cost, techniques 

involving incremental distortions of large 

matrices are impractical. Modular and steady 

high-dimensional numerical process 

deployments must be decided to seek. This 

strongly depends on mathematical instinct, 

large-scale monitoring, and fine-grained 

optimization [7]. 

 

3.3 Spurious correlation 

 

High dimensionality is characterised by spurious 

connection. It pertains to parameters which 

aren't conceivably associated but have a large 

sample correlation [8]. 

 

3.4 Incidental endogeneity 

 

Extraneous association is also caused by high 

dimensionality. Contributing factors that are 

roughly comparable to the responding are 

collected by researchers. Since there are 

numerous predictor variables, a few of the 

variables can indeed be coincidently associated 

with the remaining noise. This can result in 

prototype inaccuracy and inaccurate gene or 

SNP selection for recognising molecular 

pathways or biological affiliations [9]. 

 

3.5 Noise accumulation 

 

When a system depends on the assessment of 

distinct variables, residuals can add up. Sound 

accrual is more drastic in high-dimensional 

statistical data, and it may ultimately overwhelm 

the fundamental signals [10]. 

 

4. Big data analytics in healthcare 

 

The volume of health data is likely to rise 

significantly in the coming years [11]. 

Furthermore, healthcare reimbursement 

frameworks are evolving, with purposeful use as 

well as performance-based payments arising as 

critical technology considerations in the current 

healthcare setting. Even though profit isn't really 

and shouldn't be the key motive, healthcare 

providers must obtain the methods available, 

infrastructural facilities, and methodologies to 

effective and efficient marketing big data or 

potentially lose millions of dollars in revenue 

and profits [12]. 

 

4.1 Advantages to healthcare 

Healthcare organisations that range from single-

physician office spaces and multi-provider 

associations to major hospital networks and 

accountable care organisations can benefit 

significantly by digitising, incorporating, and 

successfully utilising big data [13]. Possible 

advantages involve trying to detect diseases 

previously in their progression, so they may be 

handled more readily and successfully; trying to 

manage particular health of individuals and 
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populations; and designed to detect fraud in 

healthcare more quickly and effectively. 

Innumerable issues are possible with big data 

analytics. Definite advancements or 

consequences, such as length of stay (LOS), 

patients who are going to select elective surgery, 

patients who might likely not gain from surgery, 

and problems, can be anticipated and/or 

guesstimated relying on immense quantities of 

historical information, patients at danger for 

serious conditions; people at risk for sepsis, 

MRSA, C. difficile, and perhaps other hospital-

acquired ailments; ailment or progression of the 

disease; patients at risk for disease state 

progression; ailment or increased infection 

possible causes; and potential co-morbid 

circumstances (EMC Consulting). 

Figure 3 shows the various ways in which big 

data can be used in the healthcare industry. It 

finds its applications right from step 1 i.e split to 

the final step i.e theme or keyword analysis.  

Figure 4 have presented an in-detail explanation 

of the solutions being provided by big-data in 

various areas. 

 

 

Figure 3 Healthcare use case diagram 

Figure 4 Big Data solutions for healthcare 
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Furthermore, [14] implies that big data analytics 

in healthcare could indeed help with: 

1. Evidence-based medicine: the use of both 

structured and unstructured information 

(EMRs, financial and operational data, 

clinical data, and genomic data) to 

contest therapies with consequences, 

anticipate clients at danger of illness or 

admittance, and deliver more effective 

service. 

2. Genomic analytics: end up making gene 

genome sequence extra effective and 

expense, and incorporate epigenetic 

analysis into routine medical care 

decision-making as well as the rising 

patient medical record [15]. 

3. Pre-adjudication fraud analysis: evaluate 

huge numbers of assertion queries 

quickly in hopes of minimizing fraud, 

waste, and abuse. 

4. Device/remote monitoring: acquisition 

and analyze information from in-hospital 

and at-home gadgets at all times for 

safety assessment and adverse reaction 

prediction. 

5. Patient profile analytics: Use analytics 

tools on patient statuses (e.g., 

fragmentation and forecasting) to identify 

people who would advantage from 

appropriate medical care or lifestyle 

modification, such as those with a high 

likelihood of getting a particular illness 

(e.g., diabetes) and therefore would 

advantage from preventative medicine 

[14]. 

4.2 Big data sources in healthcare 

Big data in healthcare can emerge from both 

intrinsic (e.g., electronic medical records, 

systems for clinical decision-making, CPOE, 

etc.) and external entities, mostly in various 

formats (flat files,.csv, interpersonal tables, 

ASCII/text, etc.) and taking up residence in 

numerous places (regional in addition to different 

medical providers' sites) in innumerable heritage 

as well as other implementations (transaction 

processing applications, databases, etc.). Among 

the source materials and types of data are: 

 

a. Clickstream and communication data 

from Facebook, Twitter, LinkedIn, blogs, and 

other social networking sites. It may additionally 

encompass health insurance internet sites, mobile 

applications, and so on [11]. 

b. Data exchanged between machines: 

observations from sensing devices, metres, as 

well as other vital sign gadgets [11]. 

c. Health care assertions as well as other 

billing information are increasingly accessible in 

semi-structured and unorganised formats [11]. 

d. Fingerprints, genetic factors, 

handwriting, retina scanning, x-rays and other 

imaging techniques, blood pressure, pulse and 

pulse-oximetry interpretations, as well as other 

similar kinds of information are examples of 

biometric data [11]. 

e. Human-generated data: unstructured and 

semi-structured information including such 

EMRs, physicians' notations, e - mails, and 

documents [11]. 

The multidisciplinary big data analytics team in 

healthcare creates a "notion declaration" in Step 

1. It is the initial attempt to determine the 

significance of such a project. The notion 

declaration is accompanied by an explanation of 

the importance of the venture. The healthcare 

provider will recognise trade-offs in aspects of 

possible alternatives, expense, expandability, and 

so forth. Once a notion declaration has been 

accepted, the squad can move on to Stage 2, 

proposition advancement. More information is 

provided here. Numerous issues are addressed 

relying on the notion declaration. The stages in 
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the technique are then clearly laid out and 

executed in Step 3. The notion declaration is 

divided into a number of suppositions. The 

variables or indicators are recognised 

concurrently. Platform and device assessment and 

choice is a critical step at this point. As 

previously stated, there are numerous choices 

available, such as AWS Hadoop, Cloudera, and 

IBM Big Insights. The information will then be 

subjected to various big data analytics 

methodologies. Just one difference between this 

procedure and routine predictive analysis is that 

the methodologies are expanded to large data 

sets. Big data analytics provides insight 

throughout a number of iterations and what-if 

analyses. With this knowledge, sound decisions 

can be made. Step 4 involves testing, validating, 

and presenting the models and their research 

results to stakeholders for action. Implementation 

is a staged approach with feedback loops built in 

at each stage to minimize risk of failure. A 

detailed diagrammatic view has been provided in 

Figure 5 demonstrating these steps.

 

Step 1 

Concept statement 

• Establishment of the requirement of big data analytics project in healthcare on the 

basis of “4Vs”. 

Step 2 

Proposal 

• Definition of the problem that is being lectured? 

• Important and motivation behind the problem? 

• The need for following big data analytics approach? 

• Background material 

Step 3 

Methodology 

• Proposal 

• Variable selection 

• Information collection 

• ETL and data transformation 

• Platform/tool selection 

• Conceptual model 

• Analytic methods 

-Association, clustering, classification, etc. 

• Consequences & understanding 

Step 4 
Positioning 

• Assessment & authentication 

  • Testing 

Table 1 Outline of big data analytics in healthcare methodology 
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Figure 5 An in-detail diagrammatic view of the application of Big data in Healthcare 

6. Big Data Application in Biomedical 

Research 

Big data is a new framework and ecosystem in 

biomedical informatics that converts specific 

instance research into large-scale, data-driven 

investigation. The characteristics of big data are 

widely accepted to be characterised by three main 

components, popularly known as the "3 Vs": 

volume, variety, and velocity. First and foremost, 

the amount of information in biomedical 

informatics disciplines is growing at a rate that is 

exponential. [16-22] The Proteomics DB [23], for 

example, encompasses 92% (18,097 of 19,629) 

of recognised genetic mutations catalogued in the 

Swiss-Prot database. The volume of information 

in Proteomics DB is 5.17 TB. From 2009 to 

2012, the promotion of the HITECH Act [24] 

roughly doubled the rate of adoption of electronic 

health records (EHRs) in hospitals to 44%. 

Electronically stored data from millions of 

patients have already been gathered and might 

potentially improve healthcare services and 

expand research prospects [25, 26].In addition, 

medical imaging (eg, MRI, CT scans) produces 

vast amounts of data with even more complex 

features and broader dimensions. 

6.1 Big Data Technologies in Biomedical 

Research 

Biomedical researchers are confronted with new 

obstacles in storages, trying to manage, and 

evaluating enormous quantities of information. 

[27] Big data's features necessitate utilizing 

influential and unique innovations to retrieve 

useful data and allow more comprehensive 

health-care solutions. We discovered technology 

tools used together in the majority of the cases 

reported, including such artificial intelligence 

(AI), Hadoop [28], and data mining tools.
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Figure 6 Stepwise diagram explaining the application of big data in biomedical research 

Parallel computing is a vital infrastructure for 

trying to manage big data tasks. It is able to 

perform computational programs concurrently on 

a machine cluster, or supercomputer. Novel 

parallel computing designs, including such 

Google's MapReduce [29], have indeed been put 

forward in recent years for a new big data 

facility. Hadoop [28], a usable MapReduce tool 

for decentralised data management, was just 

released by Apache. Data access to clustered 

servers is supported simultaneously via the 

Hadoop Distributed File System (HDFS). 

Hadoop-based facilities may additionally be 

thought of as platforms for cloud computing, as 

they enable both central data storage and remote 

monitoring via the Internet. 

As being such, cloud computing presents an 

innovative model for communicating 

customizable computational power over a 

network [30], and it can function as a facility, 

framework, and/or software to provide an 

integrated approach. Moreover, cloud computing 

can boost system's performance, quickness, and 

versatility by reducing the requirement to sustain 

either software or hardware capabilities and 

requiring limited resources for framework 

scheduled maintenance like setup, arrangement, 

and checking. Cloud technologies are at the heart 

of several new big data applications.  

6.2 Biomedical Research methodology 

Bioinformatics study analyses biological system 

variants at the molecular scale. With prevailing 

customised medicine patterns, there is a growing 

necessity generate, store, and evaluate these huge 

datasets in a controllable timespan. Next-

generation building the next generation allows for 

the rapid collection of genetic information [31, 

32]. Big data techniques play a role in 

bioinformatics applications by offering datasets, 

computing facilities, and effective data 

manipulation techniques for researchers to 

assemble and analyse biological information. 
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Taylor mentions how Hadoop and MapReduce 

are now widely used in the biomedical field [33]. 

This section categorises big data tools and 

technologies into 4 categories: (1) data storage 

and information extraction, (2) error recognition, 

(3) data processing, and (4) platform integration 

and implementation. These classifications are 

linked and may coincide; for example, most data 

processing applications may endorse basic data 

analysis and conversely. Nevertheless, in this 

study, we only classify methods that focus on 

their main purposes. 

6.2.1 Data storage and retrieval  

A sequencing machine can now generate millions 

of short DNA sequencing data in a single run. To 

be used for further research, such as genotyping 

and expression variation analyses, the sequencing 

data must be mapped to specified reference 

genomes. The CloudBurst [34] parallel 

computing model makes the genome mapping 

procedure easier. To enhance the scalability of 

reading massive sequencing data, CloudBurst 

parallelizes the short-read mapping procedure. A 

25-core cluster was used to test the CloudBurst 

model, and the findings show that it processed 

seven million short reads about 24 times faster 

than a single core system. In order to promote 

biomedical research, the CloudBurst team has 

created new tools based on CloudBurst, such as 

Crossbow [36] and Contrail [35] for assembling 

huge genomes and single nucleotide 

polymorphisms (SNP) identification from 

sequencing data. 

On a Hadoop cluster, DistMap [37] is a toolbox 

for distributed short-read mapping. With 

DistMap, more types of mappers will be 

supported, allowing it to address a wider range of 

sequencing applications. BWA, Bowtie, Bowtie2, 

GSNAP, SOAP, STAR, Bismark, BSMAP, and 

TopHat are among the nine supported mapper 

types. DistMap incorporates a procedure for 

mapping that may be used with straightforward 

commands. It works well for mapping short-read 

data, as demonstrated by an evaluation test 

utilising a 13-node cluster. DistMap enables the 

BWA mapper to complete 500 million read pairs 

(247 GB) at a rate that is 13 times faster than a 

single-node mapper. 

To facilitate access to massive whole-genome 

datasets for bioinformatics researchers, SeqWare 

[38] is a query engine built on the Apache HBase 

[39] database. An interactive interface was 

developed by the SeqWare team to incorporate 

genome browsers and tools. The U87MG and 

1102GBM tumour datasets were loaded for a 

prototype study, and the researchers utilised this 

engine to compare the capacities of the Berkeley 

DB and HBase back ends for loading and 

exporting variant data. According to the findings, 

the HBase solution is quicker when reading more 

than 6M variants, whereas the Berkeley DB 

solution is quicker when reading that many 

variants. 

The DNA Data Bank of Japan (DDBJ) created 

the Read Annotation Pipeline [40], a cloud-based 

pipeline for high-throughput analysis of data 

from next-generation sequencing. This cloud 

computing system was set developed by DDBJ to 

assist in sequencing analysis. It provides a user-

friendly interface for processing sequencing data 

sets and supports two levels of analysis: (1) 

basic-level tools accept FASTQ format data and 

pre-process them to remove low-quality bases; 

and (2) second-level tools map the data to 

genome references or assemble them on 

supercomputers. For sophisticated analysis, 

including SNP detection, RNA-sequencing 

(RNA-seq), and ChIP-seq analysis, this pipeline 

makes use of the Galaxy interface. In 6.5 hours, 

DDBJ successfully mapped 34.7 million 



Brainwave: A Multidisciplinary Journal (ISSN: 2582-659X), Vol. 4, No. 1, March 2023, pp. 335-354 

 

 

346 

 

sequencing reads to a 383 MB reference genome 

in a benchmark test. 

Scalable Hadoop-based proteomic search engine 

Hydra [41] leverages distributed computing. A 

distributed computer architecture that facilitates 

the scalable searching of enormous volumes of 

spectrometry data is implemented by the software 

package Hydra, which is used to process vast 

peptide and spectra databases. Hydra divides the 

proteome search process into two stages: creating 

a database of peptides and scoring the spectra and 

obtaining the data. On a Hadoop cluster with 43 

nodes, the system can score 27 billion peptides in 

roughly 40 minutes. 

6.2.2 Error identification  

A number of tools have been developed to 

identify errors in sequencing data; SAMQA [42] 

identifies such errors and ensures that large-scale 

genomic data meet the minimum quality 

standards. Originally built for the National 

Institutes of Health Cancer Genome Atlas to 

automatically identify and report errors, SAMQA 

includes a set of technical tests to find data 

abnormalities (eg, sequence alignment/map 

[SAM] format error, invalid CIGAR value) that 

contain empty reads. For biological tests, 

researchers can set a threshold to filter reads that 

could be erroneous (empty reads) and report them 

to experts for manual evaluation. Hadoop, which 

was evaluated on a cluster, processed a 23 GB 

sample about 80 times faster than SAMQA, 

which was tested on a single-core server, 

according to a comparison (18.25 hours). 

For three major sequencing platforms—454 

SequencingTM, Illumina, and SOLiD—ART 

[43] offers simulation data for sequencing 

analysis. Base substitutions, insertions, and 

deletions are the three forms of sequencing errors 

that ART can detect thanks to built-in profiles of 

read error and read length. 

An error-correction approach for high-throughput 

sequencing data that is built on a parallel, 

scalable framework is called CloudRS [44]. This 

technique was created using the RS algorithm. 

[45] The GAGE benchmarks were used by the 

CloudRS team to analyse the system on six 

distinct datasets. The results indicate that 

CloudRS has a greater precision rate than the 

Reptile [47] technique. 

6.2.3 Data analysis  

The Genome Analysis Toolkit (GATK), [48] is a 

MapReduce-based programming framework 

created to support large-scale DNA sequence 

analysis in addition to the mentioned frameworks 

and toolkits for sequencing data analysis. Many 

data types are supported by GATK, such as SAM 

files, binary alignment/map (BAM), HapMap, 

and dbSNP. Via the use of "traversal" modules, 

GATK prepares and reads sequencing data into 

the system, providing associated references to the 

data, such as data organisation by loci. Data is 

consumed by the "walker" module, which then 

produces analytics results. The Cancer Genome 

Atlas and 1000 Genomes Projects both made use 

of GATK. 

An international partnership has created the 

ArrayExpress Archive of Functional Genomics 

data repository [49,50] for combining high-

throughput genomics data. More than a million 

assays and 30,000 experiments can be found in 

the repository. Around 80% of the data were 

taken straight from the GEO data repository, and 

the remaining 20% came from user submissions 

to ArrayExpress. More than 1,000 unique users 

access the platform each day, and more than 50 

GB of data are downloaded. To assist with data 
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movement and analysis, the platform also has 

connections with R and GenomeSpace. 

The R package, BlueSNP [51] for GWAS 

analysis focuses on statistical tests (e.g., P-value) 

to uncover strong connections between 

significant genotype-phenotype datasets. 

BlueSNP uses the Hadoop platform, which 

lowers obstacles and boosts the effectiveness of 

GWAS analysis performed on clustered 

computers. BlueSNP examined 1,000 phenotypes 

on 106 SNPs in 104 individuals on a 40-node 

cluster in 34 minutes. 

A cloud-based computing pipeline called Myrna 

[52] computes the variations in gene expression 

found in huge RNA-seq datasets. The m-

sequencing reads used to generate RNA-seq data 

come from mRNA molecules. Reads alignment, 

normalisation, and statistical modelling are only a 

few of the features that Myrna enables for RNA-

seq analysis in an integrated pipeline. Gene 

differential expression is reported by Myrna as a 

P-value and q-value. The Amazon Elastic 

Compute Cloud (Amazon EC2) was used to test 

this system using 1.1 billion RNA-seq reads, and 

the results reveal that Myrna can process data in 

under two hours for a cost of about $66. 

Data imports from sequencer reads, data mapping 

to reference genomes, alignment filters, 

transcription expression calculations, expression 

normalisations using edgeR, and differential 

expression detection are all part of the pipeline 

for analysing the differential transcript 

expressions that was implanted by the Eoulsan 

package [53]. Three different configurations of 

Eoulsan are available: standalone, local cluster, 

and cloud using Amazon Elastic MapReduce. 

Eight mouse samples totaling 188 million 

readings were used in the Eoulsan test on 

Amazon EC2. The processing of the data cost 

between $18 and $66 and took between 109 and 

822 minutes. 

A quick, scalable, cloud-ready software suite for 

interactive genomic data processing with 

nucleotide precision is called SparkSeq [54]. For 

RNA/DNA investigations, SparkSeq offers 

interactive queries. The project is built on Apache 

Spark and uses the Hadoop-BAM library to 

analyse bioinformatics files. 

6.2.4 Platform integration deployment  

The usage of big data platforms typically 

necessitates a solid understanding of networking 

and distributed computing. New approaches are 

required to combine existing big data 

technologies with user-friendly operations so that 

biomedical researchers may adopt big data 

technology. The systems listed below have been 

created to assist in achieving this objective. 

Bioinformaticians no longer need to learn the 

specialised technical knowledge required to use 

MapReduce thanks to SeqPig [55]. The SeqPig 

project adds functionality for feature-rich 

sequence processing to the Apache Pig scripts. 

SeqPig resolves the issue of reading big BAM 

files to feed analytic programmes with the use of 

Hadoop-BAM [56]. Common sequencing formats 

supported by SeqPig include FASTQ, SAM, 

BAM, and QSeq. Additionally, it supports widely 

used processing methods like distribution, read 

coverage, read frequency count, and pileup. 

Virtual machines are also incorporated into the 

current bioinformatics platform. A sequencing 

analysis programme called CloVR [57] is 

delivered via virtual machines. CloVR supports 

both local desktop and cloud platforms to allow 

high-throughput data processing by lowering the 

technological obstacles for evaluating huge 

sequencing datasets. The virtual machine 
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incorporates a number of automated 

bioinformatics workflows and pipelines, such as 

those for whole-genome, metagenome, and 16S 

rRNA-sequencing analysis. The CloVR team 

tested the system's portability on a local 

workstation (4 CPU, 8 GB RAM) and on the 

Amazon EC2 cloud platform (80 CPU). The 

results demonstrate that CloVR works on both 

platforms, however the EC2 instance performs 

around five times quicker. In a similar vein, 

CloudBio-Linux [54] is a virtual machine 

solution that offers over 135 bioinformatics 

packages for sequencing analysis, including 

preconfigured tools (such as GATK, Bowtie, 

Velvet, and FASTX) and programming libraries 

(eg, BioJava, R, Bioconductor). 

Deploying the Hadoop cloud platform could be 

quite challenging for researchers without a 

background in computer science. CloudDOE is a 

software programme that gives a simple interface 

for building the Hadoop cloud because the 

Hadoop platform is frequently too difficult for 

scientists without computer science background 

and/or comparable technical skills. A user-

friendly tool called CloudDOE [59] makes it 

easier for bioinformatics researchers to set up the 

Hadoop cloud and utilise MapReduce to analyse 

high-throughput sequencing data. A number of 

other programmes are integrated into the 

CloudDOE package (CloudBurst, CloudBrush, 

and CloudRS), and wizards and graphical user 

interfaces further simplify use. 

7. Application of Big Data in Biology: 

Multicellular Datasets 

Big data research in Life Sciences typically 

focuses on big molecular datasets of protein 

structures, DNA sequences, gene expression, 

proteomics and metabolomics. Now, however, 

new developments in three-dimensional imaging 

and microscopy have started to deliver big 

datasets of cell behaviours during embryonic 

development including cell trajectories and 

shapes and patterns of gene activity from every 

position in the embryo. This surge of 

multicellular and multi-scale biological data 

poses exciting new challenges for the application 

of ICT and applied mathematics in this field. 

7.1 Advancements in the field 

Technological developments in microscopy and 

image analysis are now producing a flood of new 

data that excites me much more. With this data, it 

is now possible to track the movements and 

behaviours of any cell, in an early embryo, organ, 

or tumour. With this capability we will now be 

able to identify what makes cells take a wrong 

turn in children with birth defects or how tumour 

cells can change their metabolism and movement 

to out compete their well-behaved neighbours 

and disrupt the structure and function of an 

organ. Such mechanistic insights will eventually 

make it possible to interfere with developmental 

mechanisms with a greater specificity than 

currently possible. 

Conventional light microscopy can already 

follow the migration of a subset of individual 

cells (labelled with fluorescent markers) in 

organs but techniques are getting better. Two-

photon microscopy techniques, used in 

conjunction with advanced image analysis, allow 

researchers to routinely generate all-cell datasets 

of developing embryos or organs. Applying this 

approach, the BioEmergences platform at CNRS 

(Gif-sur-Yvette, France) recently produced a 

gene expression atlas featuring cellular resolution 

of developing zebrafish [60]. Soon we will be 

able to follow every cell in developing organisms 

and tissues and concurrently identify what genes 

they are expressing and what metabolites they are 

producing.  
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Ongoing initiatives in the field of information 

sciences are laying the foundations for similar 

data standards and domain-specific languages in 

the multicellular biology community. New 

versions of SBML will allow users to describe 

the distribution of molecules in fixed geometries 

and coupled cells. However, in a recent paper that 

proposed a Cell Behaviour Ontology (CBO) [61], 

it was argued that SBML is not the most efficient 

or insightful way to annotate embryological data. 

The multicellular organism is a collection of 

thousands to trillions of individual cells. 

Individually describing the gene expression 

levels and biophysical properties of each cell will 

create huge datasets but not necessarily yield 

useful insights. Even the most detailed three-

dimensional movies or sets of cell trajectories are 

merely pretty pictures unless we can identify and 

label their components meaningfully. A useful 

comparison is thinking about the difference 

between providing a list of pixels in an image 

versus the list of things in that image. CBO 

focuses on describing the behaviour of cells and 

the dependency of those behaviours on the cell’s 

internal machinery. This includes its gene 

expression pattern and local environment. This 

declarative approach allows the CBO to 

categorise each cell in a developing embryo using 

a manageable set of cell types which range from 

the tens to hundreds in number. Each cell type is 

characterised by the same class of behaviours, 

thus, cells belonging to the same cell type share 

the same behaviours. Each cell follows a set of 

logical input and output rules that guide these 

behaviours and its transition from one cell type to 

another (i.e., differentiation). Many cell types in 

multicellular organisms are ‘sub-types’ whose 

behaviour varies in subtle ways around a general 

‘base’ cell type. For example, the endothelial 

cells in a developing blood vessel are made up of 

two sub-types: ‘tip’ cells at the end of a sprouting 

blood vessel which are usually spikier and more 

motile and ‘stalk’ cells which occur to the back 

of the sprout. This approach allows the CBO to 

develop a hierarchical classification of cell types 

and cell behaviours. 

Besides compressing the data, the classification 

of cell behaviours will also enable quantitative 

biologists to understand biological development 

to a point that, with the aid of applied 

mathematicians, they can then reconstruct it 

using agent-based computer simulations. This 

will then enable them to unravel how subtle 

changes in cell behaviour, driven by factors such 

as inherited disease or cancer, can affect the 

outcome of development and why. Thus, the 

resulting datasets become more meaningful 

descriptions of the observations as well as sets of 

rules to construct agent-based computer 

simulations of those observations. In this way, 

CBO takes a ‘cell-based approach’ [62], which 

views embryogenesis as the collective behaviour 

of a ‘colony’ of individual cells. 

Figure 7 Application of Big data in Biology 
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8. Big-data medicine by dynamical network 

biomarkers 

It is commonly recognized that a complicated 

living organism cannot be completely appreciated 

by merely analyzing individual components. 

Phenotypes and functions of an organism are 

ultimately determined by interactions between 

these components or networks in terms of 

structures and dynamics [2]. Network and 

dynamics are two key aspects in computational 

systems biology [6,7–13]. However, majority of 

traditional research focuses on the static and 

statistic properties (e.g., GWAS) of big data, 

rather than the essential dynamics and networks 

of life in living organisms. Generally, a disease is 

a problem resulting not from malfunction of 

individual molecules but from failure of the 

relevant system or network, which can be 

considered as a set of interactions among 

molecules. 

 

Thus, rather than single molecules, the networks 

are stable forms as biomarkers to reliably 

characterize complex diseases. The era of big 

data [14,15] provides great opportunities for 

predictive, preventive, personalized and 

participatory (P4) medicine, which is expected to 

lead to big-data medicine. The study of network 

and interactions of biological elements rather 

than biological elements themselves, can capture 

the previously-unobserved features at the levels 

of both network (or edges) and dynamics. 

Therefore, with the demand from both theoretical 

and clinic aspects, biomarkers are evolving from 

single molecules (e.g., individual genes) to 

multiple molecules (e.g., gene set), associated 

molecules (e.g., molecule network) and 

dynamical interactive molecules (e.g., dynamical 

molecule network) due to the availability of big 

data, in particular, high-dimensional data, which 

can be categorized as node biomarkers [14,15], 

network-based biomarkers [16–18], network 

biomarkers [19,20] and dynamical network 

biomarkers (DNBs) [21,22], respectively. By 

exploiting the network information from big data, 

recent studies on Edge Marker [14,20] 

demonstrate that non-differentially expressed 

genes, which -are usually ignored by traditional 

methods, can be as informative as differentially 

expressed genes in terms of classifying different 

biological conditions or phenotypes of samples. 

By exploiting the dynamical information from 

big data, a novel biomarker, DNB, was recently 

developed [22]. In contrast to the disease state 

detected by traditional biomarkers, DNB is able 

to identify the pre-disease state before the 

occurrence or serious deterioration of diseases, 

which can actually be used to prevent from 

further disease progression before deteriorating 

into their irreversible states [21–24]. In other 

words, by high-dimensional data (such as gene 

expression, RNA-seq, protein expression, and 

imaging data), this new type of biomarkers can 

achieve the early diagnosis of ‘‘pre-disease’’ 

state or ‘‘un-occurring disease’’ state, which is a 

concept raised in ‘‘Yellow Emperor’s Canon of 

Internal Medicine’’ (one of the earliest books for 

Traditional Chinese Medicine) [14].

 

 



Brainwave: A Multidisciplinary Journal (ISSN: 2582-659X), Vol. 4, No. 1, March 2023, pp. 335-354 

 

 

351 

 

 
Figure 8 Big data applications in medicine 

 

8. Conclusion 

 

Big Data arise from many frontiers of scientific 

research and technological developments. They 

hold great promise for the discovery of 

heterogeneity and the search for personalized 

treatments. They also allow us to find weak 

patterns in presence of large individual 

variations. Salient features of Big Data which 

include experimental variations, computational 

cost, noise accumulation, spurious correlations, 

incidental endogeneity, and measurement errors 

should be seriously considered in Big Data 

analysis and in the development of statistical 

procedures. 

The use of advanced technologies by healthcare 

providers to gather knowledge from their clinical 

and other data repositories and make wise 

judgements has the potential to change as a result 

of big data analytics. Big data analytics will soon 

be quickly and extensively implemented 

throughout the healthcare system and the wider 

healthcare sector. To that goal, it is necessary to 

overcome the several difficulties mentioned 

above. As big data analytics gains popularity, 

concerns like ensuring privacy, securing data, 

establishing standards and governance, and 

upgrading tools and technology will come to 

light. Although big data analytics and 

applications in healthcare are still in their 

infancy, tremendous advancements in platforms 

and technologies could hasten their maturation. 

It must be emphasized that the health care 

industry remains well within its infancy of 

leveraging big data for business and clinical use. 

Although there have been some successes, many 

are unproven at the outcome level and much 

work remains to determine whether those 

strategies and systems that work best at one 

facility (eg, The Rhode Island Beacon 

Community Program, see page 9) can work 

equally well at another due to cultural, 

technological, and other types of variables. 

 

Big data could change what scientists know and 

how they do science. Rather than analyzing data 

to answer a particular question, creative data 

mining may allow data to inspire questions— 

opening the door for hypothesis- generating as 

well as hypothesis-driven science. 

 

The incremental expansion of health information 

across different contexts has compelled 

computational specialists to devise novel 

techniques for analysing and interpreting such 

massive amounts of data in a short period of 
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time. All these scientists and practising 

healthcare practitioners are increasingly 

integrating computational systems for signal 

analysis. As a result, the next big goal could be to 

build an in-depth representation of the human 

body by incorporating physiological parameters 

and "omics" methodologies. This novel concept 

has the potential to improve our understanding of 

disease circumstances and contribute to the 

creation of innovative diagnostic equipment. The 

increasing availability of genomic data, which 

include inherent hidden errors from 

experimentation and analytical practises, 

necessitates additional investigation. 

Nevertheless, there's many possibilities to 

incorporate continuous improvement in 

healthcare analytics at every stage of this 

rigorous process. The healthcare industry is 

obviously transitioning from a broad volume base 

to a personalised or participant field. As a result, 

understanding the emerging scenario is critical 

for scientists and engineers and professionals. 

Big data analytics is expected to progress forward 

towards a predictive system in the future. This 

would imply forecasting future consequences in 

an individual ’s wellbeing according to present or 

historical data (such as EHR-based and omics-

based). Correspondingly, structured information 

gained from a specific geography may result in 

the creation of population health records. Big 

data will help healthcare by having to introduce 

epidemic forecasting (in connection with 

population health), supplying advance warning of 

disease states, and assisting in the development 

of new genetic markers and intellectual 

individual therapy techniques for an enhanced 

standard of living. 

 

References 

 

[1] New Horizons for a Data-Driven Economy - 

Springer. doi:10.1007/978-3-319-21569-3 

[2] Hellerstein, J. Parallel Programming in the Age of 

Big Data. Gigaom Blog, 2008. 

[3] Segaran, T. & Hammerbacher, J. Beautiful Data: 

The Stories behind Elegant Data Solutions. 

O'Reilly Media, 2009, 257, ISBN 978-0-596-

15711-1. 

[4] Snijders, C., Matzat, U. & Reips, U.D. ‘Big Data': 

Big gaps of knowledge in the field of Internet. 

International Journal of Internet Science, 7, 2012, 

1–5. 

[5] Kevin N. Beyond Volume, Variety and Velocity 

is the Issue of Big Data Veracity. September 12, 

2013. http://insidebigdata.com. 

[6] Khalili, A. and Chen, J. Variable selection in 

finite mixture of regression models. Journal of the 

American Statistical Association, 2007, 102, 

1025-1038. 

[7] Fan, J., Samworth, R., & Wu, Y. Ultrahigh 

dimensional feature selection: Beyond the linear 

model. The Journal of Machine Learning 

Research, 2009, 10, 2013-2038. 

[8] Cai, T. & Jiang, T. Phase transition in limiting 

distributions of coherence of high-dimensional 

random matrices. Journal of Multivariate 

Analysis, 2012, 107, 24-39. 

[9] Tibshirani, R.J. Regression shrinkage and 

selection via the lasso. Journal of the Royal 

Statistical Society, Series B, 1996, 58, 267-288. 

[10] Fan, J. & Fan, Y. High-dimensional classification 

using features annealed independence rules. The 

Annals of Statistics, 2008, 36, 2605. 

[11] Cottle, Mike, et al. Transforming Health Care 

through Big Data Strategies for leveraging big 

data in the health care industry. Institute for 

Health Technology Transformation, 2013. 

http://ihealthtran.com/big-data-in-healthcare. 

[12] LaValle, S., et al. Big Data, Analytics and the 

Path from Insights to Value'Sloan Management 

Review, (Winter 2011Research Feature), 21 

December 2010. 2011. 

[13] Burghard, C. Big data and analytics key to 

accountable care success. IDC Health Insights, 

Sponsored by: IBM, 2012, 3-4. 

[14] Raghupathi, W. & Viju R. Big data analytics in 

healthcare: promise and potential. Health 

Information Science and Systems 2.1, 2014, 1. 



Brainwave: A Multidisciplinary Journal (ISSN: 2582-659X), Vol. 4, No. 1, March 2023, pp. 335-354 

 

 

353 

 

[15] Knabel, M. K., K. D. & Dennis S. F. Intellectual 

Property Protection for Synthetic Biology, 

Including Bioinformatics and Computational 

Intelligence. Big Data Analytics in Bioinformatics 

and Healthcare, 2014, 380. 

[16] Stratton M.R., Campbell P.J. & Futreal P.A. The 

cancer genome. Nature. 2009; 458(7239), 719–

724.  

[17] Shendure J, Ji H. Next-generation DNA 

sequencing. Nat Biotechnol. 2008, 26(10), 1135–

1145.  

[18] Metzker M. L. Sequencing technologies – the 

next generation. Nat Rev Genet. 2010, 11(1), 31–

46.  

[19] Nielsen R, Paul JS, Albrechtsen A, et al. 

Genotype and SNP calling from next-generation 

sequencing data. Nat Rev Genet, 2011, 12(6), 

443–451.  

[20] Zhang J, Chiodini R, Badr A, et al. The impact of 

next-generation sequencing on genomics. J Genet 

Genomics. 2011, 38(3), 95–109. 

[21] Murdoch T.B. Detsky AS. The inevitable 

application of big data to healthcare. JAMA. 

2013, 309(13),1351–1352.  

[22] Lynch C. Big data: how do your data grow? 

Nature, 2008, 455(7209, 28–29. 

[23] Wilhelm M, Schlegl J, Hahne H, et al. Mass-

spectrometry-based draft of the human proteome. 

Nature, 2014, 509(7502), 582–587.  

[24] Blumenthal D, Tavenner M. The “meaningful 

use” regulation for electronic health records. N 

Engl J Med. 2010, 363(6), 501–504.  

[25] Botsis T., Hartvigsen G., Chen F., et al. 

Secondary use of EHR: data quality issues and 

informatics opportunities. In AMIA Summits on 

Translational Science Proceedings, AMIA, San 

Francisco, California, 2010, pp.1.  

[26] Rea S., Pathak J., Savova G., et al. Building a 

robust, scalable and standards-driven 

infrastructure for secondary use of EHR data: the 

SHARPn project. J Biomed Inform, 2012, 45(4), 

763–771.  

[27] Margolis R., Derr L., Dunn M., et al. The 

National Institutes of Health’s Big Data to 

Knowledge (BD2 K) initiative: capitalizing on 

biomedical big data. J Am Med Inform Assoc., 

2014, 21(6), 957–958.  

[28] White T. Hadoop: The Definitive Guide. 

Sebastopol. O’Reilly Media, Inc., CA, 2012.  

[29] Dean J., Ghemawat S. MapReduce: simplified 

data processing on large clusters. Commun ACM, 

2008, 51(1), 107–113. 

[30] Armbrust M., Fox A., Griffith R., et al. A view of 

cloud computing. Commun ACM, 2010, 53(4), 

50–58. 

[31] Schuster SC. Next-generation sequencing 

transforms today’s biology. Nature, 2007, 200(8), 

16–18. 

[32] Morozova, O., Marra, M.A. Applications of next-

generation sequencing technologies in functional 

genomics. Genomics, 2008, 92(5), 255–264.  

[33] Taylor R. An overview of the 

Hadoop/MapReduce/HBase framework and its 

current applications in bioinformatics. BMC 

Bioinformatics, 2010, 11(suppl 12), S1.  

[34] Schatz M.C. CloudBurst: highly sensitive read 

mapping with MapReduce. Bioinformatics, 2009, 

25(11), 1363–1369.  

[35] Schatz M., Sommer D., Kelley D., et al. Contrail: 

assembly of large genomes using cloud 

computing. CSHL Biology of Genomes 

Conference, Cold Spring Harbor, New York, 

CSHL, 2010.  

[36] Gurtowski J., Schatz M.C., Langmead B. 

Genotyping in the cloud with crossbow. Curr 

Protoc Bioinformatics, 2012, Chapter 15, 

Unit15.3.  

[37] Pandey R.V., Schlötterer C. DistMap: a toolkit for 

distributed short read mapping on a Hadoop 

cluster. PLoS One, 2013, 8(8), e72614.  

[38] O’Connor B.D., Merriman B., Nelson S.F. 

SeqWare query engine: storing and searching 

sequence data in the cloud. BMC Bioinformatics, 

2010, 11(suppl 12), S2. 

[39] George L. HBase: The Definitive Guide. 

Sebastopol, O’Reilly Media Inc, CA, 2011.  

[40] Nagasaki H., Mochizuki T., Kodama Y., et al. 

DDBJ read annotation pipeline: a cloud 

computing-based pipeline for high-throughput 

analysis of next-generation sequencing data. DNA 

Res., 2013, 20(4), 383–90.  

[41] Lewis S., Csordas A., Killcoyne S., et al. Hydra: a 

scalable proteomic search engine which utilizes 



Brainwave: A Multidisciplinary Journal (ISSN: 2582-659X), Vol. 4, No. 1, March 2023, pp. 335-354 

 

 

354 

 

the Hadoop distributed computing framework. 

BMC Bioinformatics. 2012, 13(1), 324.  

[42] Robinson T., Killcoyne S., Bressler R., et al. 

SAMQA: error classification and validation of 

high-throughput sequenced read data. BMC 

Genomics, 2011, 12(1), 419.  

[43] Huang W., Li L., Myers J.R., et al. ART: a next-

generation sequencing read simulator. 

Bioinformatics, 2012, 28(4), 593–594.  

[44] Chen C. C., Chang Y. J., Chung W. C., et al. 

CloudRS: an error correction algorithm of high-

throughput sequencing data based on scalable 

framework. 2013 IEEE International Conference 

on Big Data; Santa Clara, California: IEEE, 2013, 

pp.717–722. 

[45] Gnerre S., MacCallum I., Przybylski D., et al. 

High-quality draft assemblies of mammalian 

genomes from massively parallel sequence data. 

Proc Natl Acad Sci U S A, 2011, 108(4), 1513–

1518.  

[46] [46] Salzberg S.L., Phillippy A.M., Zimin A., et 

al. GAGE: a critical evaluation of genome 

assemblies and assembly algorithms. Genome 

Res, 2012, 22(3), 557–567.  

[47] Yang X., Dorman K.S. & Aluru S. Reptile: 

representative tiling for short read error 

correction. Bioinformatics, 2010, 26(20), 2526–

2533. 

[48] Van der Auwera G.A., Carneiro M.O., Hartl C., et 

al. From FastQ data to high-confidence variant 

calls: the genome analysis toolkit best practices 

pipeline. Curr Protoc Bioinformatics. 2013. 

11(1110). 11.10.1–11.10.33.  

[49] Rustici G., Kolesnikov N., Brandizi M., et al. 

Array Express update – trends in database growth 

and links to data analysis tools. Nucleic Acids 

Res., 2013, 41(D1), D987–990.  

[50] Brazma A., Parkinson H., Sarkans U., et al. 

ArrayExpress – a public repository for microarray 

gene expression data at the EBI. Nucleic Acids 

Res. 2003, 31(1), 68–71.  

[51] Huang H., Tata S., Prill R.J. BlueSNP: R package 

for highly scalable genome-wide association 

studies using Hadoop clusters. Bioinformatics, 

2013, 29(1),135–136.  

[52] Langmead B., Hansen K.D., Leek J.T. Cloud-

scale RNA-sequencing differential expression 

analysis with Myrna. Genome Biol., 2010, 11(8), 

R83.  

[53] Jourdren L., Bernard M., Dillies M.A., et al. 

Eoulsan: a cloud computing-based framework 

facilitating high throughput sequencing analyses. 

Bioinformatics, 2012, 28(11), 1542–1543.  

[54] Wiewiórka M.S., Messina A., Pacholewska A., et 

al. SparkSeq: fast, scalable, cloud-ready tool for 

the interactive genomic data analysis with 

nucleotide precision. Bioinformatics, 2014, 

30(18),  2652–2653.  

[55] Schumacher A, Pireddu L, Niemenmaa M, et al. 

SeqPig: simple and scalable scripting for large 

sequencing data sets in Hadoop. Bioinformatics, 

2014, 30(1), 119–120.  

[56] Niemenmaa M., Kallio A., Schumacher A., et al. 

Hadoop-BAM: directly manipulating next 

generation sequencing data in the cloud. 

Bioinformatics, 2012, 28(6), 876–877.  

[57] Angiuoli S.V., Matalka M., Gussman A., et al. 

CloVR: a virtual machine for automated and 

portable sequence analysis from the desktop using 

cloud computing. BMC Bioinformatics, 2011, 

12(1), 356.  

[58] Krampis K., Booth T., Chapman B., et al. Cloud 

BioLinux: pre-configured and on-demand 

bioinformatics computing for the genomics 

community. BMC Bioinformatics, 2012, 13(1), 

42. 

[59] Chung W.C., Chen C.C., Ho J.M., et al. 

CloudDOE: a user-friendly tool for deploying 

Hadoop clouds and analyzing high-throughput 

sequencing data with MapReduce. PLoS One, 

2014, 9(6), e98146.  

[60] Castro-González, C. et al. A Digital Framework 

to Build, Visualize and Analyze a Gene 

Expression Atlas with Cellular Resolution in 

Zebrafish Early Embryogenesis, PLoS Comp. 

Biol., 2014, 10 (6), e1003670. 

[61] Sluka, J. P. et al . The Cell Behavior Ontology: 

Describing the Intrinsic Biological Behaviors of 

Real and Model Cells Seen as Active Agents, 

Bioinformatics, 2014, 30(16), 2367-2374 

[62] Merks, R.M.H. and Glazier, J.A. A Cell-Centered 

Approach to Developmental Biology, Physica A, 

2005, 352(1), 113–130 


